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Abstract. It is shown that a stochastically-quantized theory of interacting fermion and gauge fields in odd 
spacetime dimensions can be renormalized, preserving both gauge- and parity-invariance. Thus, the pertinent 
parity-violating anomalies are not reproduced by the stochastic quantization. Moreover, this theory does 
not possess a nonperturbative equilibrium limit unless one introduces an appropriate parity-violating 
counterterm. We conclude that an odd-dimensional gauge theory with fermions cannot be inconsistently 
quantized in the stochastic scheme unless the parity-violating anomales cancel. 

1. Introduction 

The stochastic quantization scheme (SQS) for field-theory models [ 1] has attracted a 
lot of interest in the last few years due to some remarkable features in handling 
gauge-fixing problems in non-Abelian gauge theories [1, 2], models with nonlinear 
constraints [3], applications to numerical simulations [4] and providing deeper insight 
into the structure of supersymmetric theories [5]. SQS offers some new invariant 
regularizations [6] and its consistency was checked when deriving from SQS the correct 
chiral anomalies in gauge theories with chiral fermions [7-9]**.  

Recently, however, some problems in the application of SQS to models possessing 
nonperturbative properties due to the nontrivial topology of their configuration spaces 
were observed [7, 11 ]. Namely, SQS was shown not to enforce at finite stochastic time 
quantization of physical parameters in theories with multivalued actions (e.g., SQS 
average are well defined at finite stochastic time for any values of the coefficient of 
Chern-Simons terms in odd spacetime dimensions D and of Wess-Zumino terms in 
even D, respectively). On the other hand, for quantized massless fermions interacting 
with an external background gauge field in odd D, SQS fails to reproduce [7] the 
pertinent parity-violating anomalies (PVA)[12]. (Here, 'parity' means 'space- 
reflection'.) 

However, this last feature of SQS is still not sufficient to answer completely the 

* On leave of absence from: Institute of Nuclear Research and Nuclear Energy, Boulevard Lenin 72, 
1784 Sofia, Bulgaria. 
* *  References [10] also discuss chiral anomalies within the SQS. However, these authors' conclusion 
about the impossibility of describing chiral fermions in SQS for finite stochastic time is incorrect (for a 
criticism, see the second Ref. [8]). 
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question about the nonperturbative consistency of SQS in odd D. The reason is that the 
regularized fermion effective action 

S,~e:[A] = -In det[ - i7(A)]  Crag) , (1) 

(v(A) = ~,,,v, = ~,~(a,, + ~ , , ) ) ,  

in which PVA appear [see Equations (2) and (3) below], simply cancels out in the 
equilibrium-limit fermion correlation functions in a background gauge field A~,(x). [We 
shall explicitly consider the case of U(n) gauge fields A~,(x) = A~,(x)T a, where {Ta}, 
a = 0, 1 . . . . .  n 2 - 1 form a basis of Hermitian U(n)-generators.] Thus, in the case of 
background fields A~,(x), the uncontradictable coexistence of the following two 
properties takes place: 

(i) Manifest preservation of both gauge- and parity-invariance in the SQS fermion 
correlation functions through invariant stochastic regularization (e.g., that of the 
first Ref. [6]) of the fermion propagators in the background field A~,(x); 

(ii) The appearance of PVA in S g fr[A ] (Equation (1)) [ 12 ] provided (cf. Refs. [ 13 ]): 
2n > D = odd, i.e., the homotopy group rro(U(n))= Z, and Nf (number of 
fermion fiavours) = odd simultaneously. 

Let us note that S,~ff[A] does not enter SQS at all, since (1) can never be represented 
as an SQS average of a certain functional of the fermion fields. 

It is the aim of the present Letter to analyze, by means of a nonperturbative method, 
the full stochastically-quantized theory of both fermion and gauge fields in odd D with 
respect to PVA. 

At the end of this introduction, let us recall the form of the regularized SIft[A] 
(Equation (1)) [ 12]: 

In det [ -iV(A)] (reg) 

1 7~ 
= ~ln det[V2(A)] (reg) - i ~ r/V(A ) -- Sc.t.[A] (2) 

where 

In det[V2(A)] (reg~ = - --(tsd ~V2(A)(S ) s=O 

is regularized by the [-function method [ 14], PVA are contained in qv(,~) denoting the 
parity-odd spectral asymmetry-measuring q-invariant [15] of the Dirac operator 
7(A) and Sc.t.[A] represents a local gauge-invariant counterterm accounting for the 
renormalization ambiguity. 

Let us recall the identity 

n~A~ = 2 W ~ s [ a ]  + 2/~ '+  ~ [ a ]  (3) 

where W(c~s[A] denotes the well-known Chern-Simons secondary class (e.g., 
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Ref. [16]) and I ~D+ 1)[A] is the index of an appropriate D + 1(= even)-dimensional 
extension of the Dirac operator (cf. the last Ref. [12]). Finally, let us point out that 
although Equation (2) was originally obtained from spectral decomposition considera- 
tions, it may equivalently be derived by means of Pauli-Villars regularization. In the 
following, indices and arguments will often be suppressed for brevity. 

2. Functional Integral Formulation of S Q S  

In this section we derive an expression for the generating functional of gauge-invariant 
SQS averages for gauge theories with fermions. It takes the form of a generating 
functional of an effective D + 1-dimensional theory. This is a nontrivial extension of the 
usual superspace functional formulation of SQS [17], since in the present case the 
fermionic Langevin equations contain a nontrivial kernel [m - iT(A~"))] (cf. (5a) and 
(5b) below] which, in particular, leads to an explicit breaking of the supersymmetry of 
the effective D + 1-dimensional theory. 

The models under consideration are described by the following classical action: 

S[A, ~/, ~ ]  = S y M [ A  ] -4- SF[A , ~1, ~] ,  

[A] = (4ng 2)-1 f dDx tr SyM [F~v(A)], 
(4) 

SF[A,  ~, -~] = _ f dDx-~(x) [iV(A) + m] q,(x) 

F~,v(A) = 8~A v - O~A~, + i[A~,,Av] . 

The SQS Langevin equations corresponding to (4) are taken in the following form: 

C~t~")(~, x) = -[72(14 (") + m2] ~")(~, x) + [m - iT(A("))] r/(z. x) ,  (5a) 

C ~ ~  x) = - [v2(a (")) + m2]r~b~n)(z, x) + ~(z, x) ,  (5b) 

~Aa(n)('r~_, , , X) = - [ V v r ,  v(ACn))la( z, x )  - 

- g2~'7~(z, x)r"7~,~'7)(z ,  x)  + grl~,(z, x ) ,  (6) 

(in perturbation theory in g one should make the rescaling A~,--, gA~,), with initial 
conditions at r = Zo (in particular, one can take Zo ~ - zc): 

~'7)(z o, x )  = O, ~'7)(~o, x)  = 0 ,  "~.a(n)t~"~ x)  = - i u - l ( x )  O~,u(x) (7) 

with u(x~E)U(n),  and with the follovdng correlation functions of the Gaussian random 
sources r 1 , r/.: 

( n(z, x )~ (~ ' ,  x'  ) = 2a(~ - ~')a~")(x - x ' ) ,  

( a b t q~,(z, x)rl~(~: , x ' ) )  = 2b"eb~,~b(~ - z')bCD)(x - x ' ) .  

To investigate the problem of PVA within SQS it is sufficient to consider SQS averages 



222 E. R. NISSIMOV AND S. J. PACHEVA 

of  gauge-invariant functionals depending only on A u at equal stochastic time z = t: 

= ( t)] x <:[A.(., t)]> n 
it; 

where A~ n~ denotes the solution to the coupled system (5), (6) with initial conditions (7). 
To  proceed, we solve explicitly (5a) and (5b) accounting for (7), and insert the 

solutions into (6): 

OrA~(n)(z, x) = -[VvFu~(A("))]~ (z, x)  - g2(-~G(_ )[A(")]) (z, x) x 

• TaTu(G(+ )[A (") ] (m - iV(A(n)))rl) ('r, x )  + grlu('r, x ) ,  (9) 

where the Green 's  functions read 

G(_+)[A] = [ +  0~ + m 2 + V2(A)]-I  (z, x; z' ,  x ' ) .  (10) 

Now, the effective Langevin equation (9) can be used to perform a functional change 
of  variables in (8) from r/~, to A~, - A~ n)*. Introducing an integration over auxiliary 
Grassmann algebra-valued field variables C~, C~ into (8) to represent the functional 

Jacobian det I] ~ b brl;, ~hA ~ 11 as a functional integral, and another integration over a bosonic 

auxiliary field E~, to render the exponent  in (8) quadratic in q, ~, one can perform the 
resulting Gaussian functional integral over q, ~, to obtain the final formula: 

= f ~A,,~C,,~-d,,~F~,,:[A,,(', t)] x <:[A.(., /)]>n 

X exp { - E y M [ A ,  C , - C , E ]  - Z,%fr[A, C , - C , E ] } .  (11) 

Here the following notations are used: 

1 f D a a �9 a g 2 ~ S y M / b a ~  ) ZyM - - -  d z d  x[E~,E~, - tE A (O.~A u + 
- g2 

g b SVM/bA~,bAv)Cv ] ,  _ -ac~(oTbabbuv "Jr 2 2 , O b (12) 

Z~ er = - T r  ln[1 + 2(Qo(m 2) + m Q l ( m 2 ) ) ] ,  (13) 

where the operators Qo, 1 are defined in terms of  G{• [Equation (10)] as: 

Qo - - i Q l  Xl(A) + iG(_ )CG( + }C , (14a) 

Q~ = -iG( _ )EG{ + ) - G( _ )(V(A)C + CV(A))6(_ )CG( + ) + 

+ G( _ )CG< + )(7(A)C + CT(A))G( + ), (14b) 

* From Equation (9), r/v is, in fact, a functional of the gauge orbit {A~('r,x)tA~(z,x)= u-~(x) 
x (Au(z, x) - i 0o)u(x), u(x)~ U(n)}. This property is accounted for in Equation (11), on the understanding 
that the functional measure ~A~, is a measure over the gauge orbit space, i.e., this measure includes all the 
necessary gauge-fixing and ghost terms. 
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and 
( - )  ( - )  

- -  a a a a E = E u T  7., C -- C . T  7, 

denote multiplication operators. 
Let us note that whereas Z y i  [Equation (12)] may be rewritten in an explicitly 

supersymmetric form as a function over the Euclidean superspace N ~  112 with 
coordinates z = (x, zl 0, 0)*:  

EVM = �89 f dD+ l lEz t r [~u ,  ~cu] - i f d2OdzSvM[~r 

du(z) = A~,(z, x) + OC.(z, x) + Cu(z, x)O + OOE.(z, x),  (15) 

= ~/oo, ~ = ~/~o- io ~ ,  

Z,~ fr [ Equation (13)] explicitly breaks this supersymmetry. 

3. Regularization of the SQS Fermion Effective Action 

The starting Langevin equations (5) and (6), as well as (9), are manifestly gauge- and 
(when m = 0) parity-covariant. Parity (space-reflection) transformations are defined in 
odd D as follows: 

r  = -i~lO(z, xp), ~ . ) ( z , x )  = i~(z, xp)~ , 

A(P)(z,x) = (Ao, -A1,A2 . . . .  ,Az)_l)(Z, Xp), Xp- (x O, -x l ,  x 2 . . . . .  xD-1). 
(16) 

( - )  
~/,, C , ,  E~, have the same parity-transformation properties as A~,. In particular, under 
(16) we have m -~ - m  in (5), (6) and (9). 

In the usual quantization of (4), PVA arise from gauge-invariant regularization ofS~ rr 
[Equations (1) and (2)] under conditions (ii) of Section 1. PVA can be isolated even for 
massive fermions [7, 13] as the m-independent parity-odd part of s~-er[A] = - In  det 
[ -(iV(A) + m)]. Likewise, in the SQS averages (11), PVA may possibly arise as an 
m-independent parity-odd contribution to Z~- fr [Equation (13)] as a result of its gauge- 
invariant regularization. To this end, the Pauli-Villars regularization is chosen and for 
simplicity only the case D = 3 will be explicitly considered (the generalization to higher 
odd D being straightforward). 

In the ordinary quantization of (4), gauge-invariant Pauli-Villars regularization of 
fermionic loops may be achieved by adding to the classical action S[A, 0, ~] (4) an 
action of heavy mass spinors X, ~ with opposite (bosonic) statistics: 

S[A, ~,~, Z,~] = S[A, ~,~] - ; d3x~[M + iV(A)]z  o.t.fal + (17) 

where ~gc.t.[A] is, as in Equation (2), a local (gauge-invariant) counterterm accounting 

* For general notions of superspaces,  see Ref. [18]). 
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for the renormalization ambiguity (when M ~  oo). SQS applied to Equation (17) means 
that additional Langevin equations for the Pauli-Villars regulator fields arise: 

0,X = -[72(14) + M2]Z + [M - iV(A)]j,  

0 ~  = -[7Z(A) + Mz]T~ + ) ,  

(j('c, x)j(z ' ,  x ' ) )  = 2(5(z - z')5(O)(x - x ' )  

0rA ~ = - [ V v F ~ a v ]  a - g2~Tay~,~]- g 2 z - T a y t ,  z - 

-- (~gr [A ]/bA~, + rl;. 

(18a) 

(lgb) 
(18b) 

(19) 

Equations (18) and (19) lead to the following regularization of s er [Equation (13)] in 
the SQS generating functional (11): 

Z~-er(r~g)(m) = lim {Z~er(m) - Z~er(M)} + s 
M ~ o o  

$-,(normal) ~'~F 4" Z(F PVA) + Zc.t .  , 

= - i  f d20dzSc . t . [d ] ,  (20) Zr 

where the parity-normal and the parity-violating parts of Z~- frr are explicitly separated 
and the counterterm Zr is written in the superspace notation (15). 

In D = 3, according to (15), (5) and (6), we have the following field scale dimensions: 
( - )  

dimA~, = 1, dim C ,  = 2 ,  d imE,  = 3.  (21) 

Then, from dimensional and parity-transformation arguments using (14b), (21) and (16), 
one can easily deduce that the only PVA contribution to (20) may arise from the first 
term in the expansion of s [Equation (13)] in powers of Q0, ~: 

ZyVA) = lim {2MTr[QI(M2)]} .  (22) 
M---~ oo 

To compute (22), one can use the 'proper-time' representation for G(+ ) [Equation (10)] 
entering Q1 [Equation (14b)]: 

G(+)(z,x; z', x ' )  

I; = d e [ M  2 + 72(A)-T - 8~] exp{ -c~[M 2 + 72(.4) + 0r] [M 2 + VZ(A)-T - 0r] } . 

(23) 

After rescaling e--*B = ~1'/4 in (23), the behaviour of (23) in the limit M ~  oo is 
determined by the asymptotic Seeley-De Witt expansion of the corresponding 'heat 
kernel' for small ft. (The coefficient functions in this expansion may be systematically 
calculated by means of the symbol calculus of (pseudo) differential operators, cf. for 
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example Ref. [19].) The result of this computation for (22) is: 

~'~(FPVA) - -  1 f dzd3xe.vxtr[E.F~a(A) _ 2C,V~C~] 
8rt 

j 2 1 d2Od3x~u~atr[duF~a(d ) _ i3dudvda ] 
16~ 

f d2Od~W(c3)s[d], (24) 

where once again the superspace notation (15) is used. 
Although (24) is the (3 + 112)-dimensional superspace analogue of the ordinary 

Chern-Simons term W C3) IA 1 there is a crucial difference between them. Unlike the C h S t  J~ 

ordinary w(3~ N �9 , ChS t-- ], (24) is gauge-invariant under arbitrary homotopically nontrivial (~- 
and 0-independent) gauge transformations. Therefore, we can choose the local gauge- 
invariant counterterm in (20) in the form: 

Z~  [ d ]  = -re f d2Od~WCc3h)S[d], (25) 
3 

i.e., 

S c t . [ A ]  = -inW~}hs[A] in Equations (17) and (19), 

such that the PVA is cancelled completely: 

(25') 

~ f f ( r e g )  = ~ -~ (norma l )  
~ f  

4. Conclusions - Inconsistency of SQS in Odd Dimensions 

The main result of Section 3 is that, unlike ordinary quantization in odd D, SQS is free 
of PVA for finite stochastic time t. In fact, we have shown that SQS averages (11) can 
be renormalized in such a way that both gauge- and parity-invariance are maintained. 

Now, let us analyze what are the implications of the absence of PVA in the 
renormalized SQS averages (11) for the equilibrium limit: 

lim ( 5[A(~")(., r ) ] ) .  

= l i m  (limo~ f @ , ~ r / ~ j g ) •  

x~T[A~n'J)(',t)]exp{-fdDxdz[lrl~rl~+�89 (26) 

where A~"' J) is the solution to the regularized effective Langevin equation (19). According 
to (25'), Equation (19) contains the 'drift' term ' (D) a mbWchs/bA u. However, as was shown 
in Ref. [ 11 ], SQS averages corresponding to gauge-field Langevin equations with a drift 
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�9 (D) a term lr in odd D do not possess a nontrivial equilibrium limit [under 
conditions (ii) of Section 1], unless ~ is quantized as ~ = 2nl, l~  •. 

As a consequence, the SQS averages (26) do not possess a nontrivial nonperturbative 
equilibrium limit [under conditions (ii) of  Section 1 ]. On the other hand, the equilibrium 
limit (26) does exist, provided we set ~c.t.[A] = 0 in (17) and (19), i.e., Ec.t. = 0 in (20). 
This, however, implies parity-violating renormalization of (26) and (11) or, equivalently, 
this can be interpreted as introducing an additional parity-violating counterterm 
S~.t. [A ] = + in W~c~)s [A ] to the parity-invariant (for m = 0) renormalized SQS for gauge 
fields and fermions in odd D. 

Finally, we conclude that the conflict between the absence of  PVA in SQS and their 
pertinence to the ordinary quantized theory and, correspondingly, the dependence of  the 
equilibrium limit of  the SQS averages (26) and (11) on the renormalization scheme 
prescriptions should be viewed as the inconsistency of  SQS in odd D. 
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